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INTRODUCTION

They key results and simplest examples for the present paper are furnished
by the following theorems ofP. P. Korovkin [12, [13]. They concern positive
linear operators T on the space C [a, b]:

THEOREM I. Let {Tn, n = 1, 2, ...} be a sequence ofpositive linear operators
on C[a, b], andfor each of the functions g;(x) = Xi, i = 0,1,2, let

lim Tngi(x) = gj(x) uniformly on [a, b].
n

Then, for all f E C[a, b],

lim TnCx) = f(x) uniformly on [a, b].
n

In other words, the triple 1, x, x2 is a test set.

THEOREM II. There is no test set for C [a, b], consisting only of two
functions.

THEOREM III. A triple to ,II ,f2 is a test set exactly when it is a Cebysev
system on [a, b].

For the proofs, see for example [13]. As predecessors of Korovkin,
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162 BERENS AND LORENTZ

T. Popoviciu, and H. Bohman should be mentioned. Korovkin was the first,
however, to consider arbitrary positive linear operators on C[a, b].

An abstract formulation of the problem before us is as follows. Let E, F be
two real or complex Banach spaces. Let .cr be a fixed subclass of the set of
all continuous linear operators from E to F, and let P be a fixed operator of
the class .cr. A set seE is a Korovkin set with respect to .cr, P, if for each
sequence Tn E.cr, the relation Tn g ---+ Pg, g E S (in the norm of F) implies
Tnl ---+ PI, lEE.

Our problem is to characterize Korovkin sets. In what follows, E = F =

C(X), and P is the identity operator 1.
The present expository paper concerns itself with the geometric approach

to Korokin's theorems and has its origin in the paper [23] of Saskin. It is
based on the lectures delivered by G.G. Lorentz at the Regional Conference
at Riverside, California, in 1972. The mimeographed edition [17] of the
lectures has been much improved in a course offered by H. Berens at Erlangen
University in the Winter Semester 1973-74. In the present form the exposition
is a product of both of us. We are grateful to Prof. Oved Shisha for his offer
to publish it in the Journal of Approximation Theory.

1. KOROVKIN SETS IN C(X)

1.1. Basic Definitions

1.1.1. Let X be a compact metric space, C(X) be the space of all
real-valued continuous functions I on X with the norm

IIIII = max{lf(x)[: XEX},

and let C+(X) be the cone of positive functions in C(X). The space 19'(C)
of endomorphisms on C(X) contains all positive linear transformations T
that map C+(X) into itself: TI;;?: 0 whenever I;;?: O. For a positive trans
formation T one has i TI I ~ T II I; moreover, if 1x denotes the constant
function equal to 1 on X,

II Til = !I Tl x II·

This follows at once from the inequalities II Till ~ II T(II/II lx)11 = IIIII !1 Tl x II·
(Similar remarks apply to positive functionals on C.)

We denote by .cr+ the cone of positive transformations, by 5;: the class
of contractions Tin C(C) characterized by II TIl ~ 1, and by 5;:+ that of
positive contractions.

The purpose of this and the next section is to find characterizations
of Korovkin sets S C C(X) with respect to .cr, which may be one of the
three classes, .cr+, 5;:, and 5;:+. The operator P will always be the identity I.
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We give analytic descriptions of Korovkin sets, and later, geometric descrip
tions, based on notions of convex sets and extreme points.

Section 1 is based on the fundamental papers [22, 23] of Saskin, which
treated the case of the class f/+ and of finite S. Later Saskin [24] and Wulbert
[28] indicated the possibility of a similar treatment of 9;. .

1.1.2. For a compact metric space X, we denote by Jl(X) the
space of real regular Borel measures f" on X. The norm of f" E Jl is its total
variation f I dl-t I on X. According to the Riesz representation theorem,
Jl(X) is isometrically isomorphic to the dual space of C(X). For the duality
relation between C(X) and Jl(X) we use both notations

f"(f) and f fdf".

We denote by @l(X)the space of probability measures f" on X that are positive
and satisfy I-t(X) = 1. Equivalently, they are characterized by the relation
f"(lx) = 1 = II f" II· Corresponding to the classes of transformations, we
define: 2+ as the cone of positive measures in Jl, 2;. as the unit ball in Jl,
and 2;.+ = 2+ n 2;. . !l' will stand for one of the three classes.

For given X and f/, we denote by m(X, f/) the smallest cardinal number
of a Korovkin set S C C(X) with respect to f/. One proves without dif
ficulty:

PROPOSITION 1. Let </J be a homeomorphiC mapping of X onto another
compact metric space X'. If S is a Korovkin set for C(X) and the class f/,
then also S' = {g' = go </J-l: g E S} is a Korovkin set for C(X') and the
same class f/.

Hence, the minimal order m(X, f/) is a topologiwl invariant of X.

Later we will see that a Korovkin set S with respect to f/ in C(X) satisfies
the following conditions:

(i) S separates points of X: for each pair of points x, x' E X, x =1= x',
there is a function g ES for which g(x) -# g(x').

(ii) S does not vanish on X: for each x E X there exists agE S with
the property g(x) -# O.

In view of this, it is reasonable to assume from the beginning that the set S
satisfies (i), (ii). We call such S admissible. Condition (ii) is satisfied if S
contains a strictly positive function go(x) > 0 for all x E X.

1.2. A Necessary and Sufficient Condition

1.2.1. For a set S C C(X), we shall denote by G = lin S its linear
hull in C(X), by G = lin S its closed linear hull, and by G* the dual space
ofG.
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It is convenient to carry out the proofs in Sections 1.2. and 1.3. at once
for the three possible classes Y: Y+, ~, and ~+ with:? denoting the
corresponding class :?+, 2;. , 2;.+.

To each of these three:? and each x E X we make correspond the set
of functionals

:?xCS) = {fL E:?: fL(g) = g(x), g ES}.

The evaluation functional Ex, defined by Ex(f) = f(x), obviously belongs
to :?x, but this set may contain further functionals. Let Ix be the restriction
of Ex to G. Then :?x consists exactly of all those functionals fL E :? that are
extensions of Ix .

If Ix E S, then :?x = f/JJx' where

f/JJx(S) = {fL E f/JJ: fL(g) = g(x), g E S}.

1.2.2. We shall need some lemmas about the class :?+.

LEMMA 1. The linear hull G of S C C(X) contains a strictly positive
function exactly when the zero measure is the only measure in :?+ that
annihilates G.

Proof The condition is clearly necessary. To prove its sufficiency,
assume that G does not contain a strictly positive function. The representation
of functions from G1 = G + ~lx in the form g + ,\I x is unique. It follows
that the functional

I(g + '\l x ) = ,\

is well-defined on G1 . It annihilates G and is positive, since g + ,\lx ;;? 0
implies ,\ ;;? O. According to Krein's extension theorem [2, p. 12], I has a
positive (hence continuous) linear extension fL E :?+.

LEMMA 2. Let S be a subset of C(X) that satisfies for some x E X the
condition

(1.2.1)

Then the linear hull G of S contains a strictly positive function.

Proof Otherwise, according to Lemma I, there exists a measure fLo E :?+,
fLo 0/= 0 that annihilates G. Then Ex 0/= Ex + fLo E :?x+(S), contradicting (1.2.1).

This statement is not necessarily true for ~ or ~+ (see Example 9,
Section 2.2).

LEMMA 3. Let (1.2.1) be satisfied, and let {fLn: n = I, 2, ...} be a sequence
in 2+ for which limn fLn(g) = g(x) for all g E S. Then the norms Ii fLn II are
bounded.
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Proof Let go be a strictly positive function in G, and let go(x) ?: c > 0
for all x E X. Then

PROPOSITION 2. Let S C C(X) and x E X be given. Then the condition

(1.2.2)

is necessary and sufficient in order that for each sequence {fLn: n = 1,2,...}
in fi', relations

should imply

lim fLn(g) = g(x),
n

lim fLn(f) = f(x),
n

fE C(X).

(1.2.3)

(1.2.4)

Proof The necessity of the condition is obvious. If fLo E fi'x , fLo oF E;x ,
then the consideration of the sequence {fLn = fLo: n = 1,2,...} leads to a
contradiction.

To prove the sufficiency, let (1.2.2) and (1.2.3) be satisfied. We establish
(1.2.4) by using the weak* topology in vIt(X). Let {fLn

k
: k = 1,2,...} be

an arbitrary subsequence of {fLn}' The sequence of norms II fLn
k

II is bounded;
for the case fi' = fi'+ this follows from Lemma 3. The weak* compactness
of balls in vIt(X) and the separability of C(X) imply the existence of a sub
sequence nk ' ---+ (jJ and of an element fLo E vIt(X) for which fL~k ---+ fLo in the
weak* topology. Since fi' is weak* closed, fLo E fi'. Now (1.2.3) implies
fJ-o(g) = g(x), g E S, or fLo E fi'x. By (1.2.2) we have fLo = Ex .

1.2.3. From Proposition 2 we can derive several corollaries.

THEOREM 1. For a set S C C(X), the conditions

XEX (1.2.5)

are necessary and sufficient in order that for each sequence {Tn: n = 1, 2,...}
in :T, the relations

should imply

lim Tng(x) = g(x) pointwise on X,
n

lim Tnf(x) = f(x) pointwise on X,
n

fE C(X).

(1.2.6)

(1.2.7)

Proof The sufficiency of the condition is immediate. To prove the
necessity, assume that there exists a point Xo E X and a functional fLo E fi'x (S),

o
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fLo =1= e",o' We prove more than is needed at present, namely, that there
exists a sequence {Tn} in .r for which (1.2.6) holds uniformly on X, and that
(1.2.7) fails.

Let d( , ) be the metric on X. For each n = 1,2,... we select a function
epn E C(X) with the properties °~ epn(x) ~ 1, epn(xo) = 1, and epn(x) =~ °
for d(x, xo) ~ lin. We define

Tnf(x) = fi'o(f) . epn(x) + f(x) . [1 - epn(x)],

This sequence {Tn} belongs to .r, and for each g E S

n = I, 2, .... (1.2.8)

lim Tng(x) = g(x)
n

uniformly on X.

On the other hand, there exists a function.fo E C(X), for which fLo(.fo) =1= fo(xo).
For this function we have

n = 1,2,....

1.2.4. According to a classical result, a sequence {In: n = 1,2,...}
in C(X) converges weakly to an element.fo E C(X) if and only if the sequence
of norms {llfn II} is bounded, and limnfn(x) = .fo(x) pointwise on X (see
[9, p. 265]). For 5; and ~+ this yields the following theorem.

THEOREM 2. The statement of Theorem 1 remains true with pointwise
convergence replaced by weak convergence in C(X).

We leave the proof for the class .r+ to the reader.

1.2.5. We now give the main result of this section, which charac
terizes the Korovkin sets of C(X) for uniform convergence.

THEOREM 3. A necessary and sufficient condition for a set S in C(X)
to be a Korovkin set with respect to .r is that

for all x E X. (1.2.9)

Proof The necessity follows from the proof of Theorem 1. To show
the sufficiency, assume that there is a sequence {Tn: n = 1, 2, ...} in .r
which enjoys the properties Tn g --+ g for g E Sand Tnfo -f+.fo for some
.fo E C(X). Then there exists an E > 0, a sequence {nk: k = 1,2,...} and a
sequence of points {Xk: k = 1, 2, ...} in X for which
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Since X is compact, we can assume that X/c converges, say to Xo E X. We
define the sequence {!Lk: k = 1, 2, ...} of functionals by means of the formula

!Lk(f) = TnJ(Xk)'

The functionals !Lk belong to ff and satisfy

lim /kig) = g(xo), g E 5.
k

According to Proposition 2, !L/c --+ E", weak* for k --+ 00. In particular,
o

/kifo) --+ fo(xo) for k --+ 00, and this is a contradiction.
From Theorem 3 one easily derives conditions (i) and (ii) of 1.1.2: If

(i) is violated, one should compare E"" E",' ; if (ii) is violated, one compares
Ex and O.

COROLLARY 1. A subset 5 of C(X), which contains the function lx,
is a Korovkin set in C(X) with respect to :!T if and only if

for all x E X. (1.2.10)

1.2.6. We show that for the case of ,f/+, the consideration of
Korovkin sets can be reduced to sets containing the function Ix.

PROPOSITION 3. If 5 is a Korovkin set with respect to :!T+ in C(X), then
the same holds for the set 5' = {g' = go g: g E 5}, where go is an arbitrary
strictly positive function in C(X).

Proof We select a point x E X and have to show that ff",+(5') = k"}.
Let /ko E ff",+(5'). Then

/ko(gog) = go(x) g(x), g E 5.

The measure y, defined by
I

y(f) = go(x) /ko(gof)

is positive and belongs to ffx+(5). But according to Theorem 3, the last
set consists only of the functional Ea,. Thus, y = Ex and, consequently,
/ko = Ex'

PROPOSITION 4. Let 5 be a Korovkin set of order m with respect to ,f/+

in C(X), then there exists another such set 5 which contains Ix and has order
not exceeding m.

Proof According to Theorem 3 and Lemma 2, the set G = lin 5 contains
a strictly positive function go. By Proposition 2, the set 5' = {g' = g/go:
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g E S} is also a Korovkin set. The dimension of G' = lin S' is the same
as that of G, hence at most m + I, and Ix E G'. We can select for G' a
basis So of at most m + I functions, which contains Ix. This will be the
required Korovkin set.

Our purpose now will be to replace the analytic conditions (1.2.9) and
(1.2.10) (in Theorem 3 and Corollary I) by simpler conditions of geometric
character. This will be especially apparent in Section 2, where our conditions
express simple properties of convex sets in the Euclidean space IRmH. For
this purpose we need the basic notions and theorems about convex sets
in vector spaces, which we assume to be known. See, for example, [2, 9,
14, 20].

1.3. Sets Containing the Function ]x , Choquet Boundary, and Peak Points

1.3.1. In this section, So will be a subset of C(X) that separates
points and contains the function Ix; hence, it is admissible. We discuss
conditions under which So is a Korovkin system. As before, let G = lin So ,
G = lin So, and let G* be the dual space of G. For x E X, Ix E G* is the
functional given by Ix( g) = g(x), g E G. Of basic importance for us is the
map

QJ: x -+ Ix , XEX (1.3.1)

which sends points x of X into functionals Ix E G*. By assumption, this
mapping is one-to-one. We denote by X* the image of X under QJ in G*.
If G* is equipped with the weak* topology, QJ is continuous, hence x*
is weak* compact as the image of the compact set X. We see that QJ is a
homeomorphism. Let K = co* X* be the weak* closed convex hull of x*
in G*. Also K is weak* compact, moreover we have

LEMMA 4. K = {I E G*: l(Ix) = I = il/ll}.

Proof Let Ko be the right-hand side of the equation, then obviously
K C Ko . Assume that there exists an 10 E Ko\K, then 10 and K can be separated
by an element g E G, so that

sup{g(x): x E X} :s:;: sup{l(g): IE K} < lo(g). (1.3.2)

This inequality is not destroyed if a constant is added to g. Selecting this
constant properly, we will have II g II = sup{ g(x): x E X}, and then (1.3.2)
is a contradiction, since lo( g) :s:;: II gil·

According to the theorem of Krein-Mil'man, the set of extremal points
of K is not empty, and by Milman's addition to the theorem, the set of the
extremal points is contained in X*. (Mil'mans addition states that the
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extreme points of co M belong to the closure of M.) Of importance for
us will be

PROPOSITION 5 [2]. Let x E X, then the functional Ix is an extremal point
of K if and only if

(1.3.3)

Proof First assume that (1.3.3) is violated. Then the functional Ix
has an extension I-' E f!lJx that is not identical with Ex. Because the measure
I-' is regular, there exists a compact set DC X\{x}, for which I-'(D) > O.
Since D is compact, there exists a point Xo E X and a decreasing sequence
{Dk : k = 1, 2, ...} of compact sets for which

and k = 1,2,....

If we had Ak = 1 for all k, then it would follow that I-' = Ex , hence Ix = Ix ,
o 0

which contradicts 1.1.2(i). Hence, Ak < 1 for all large k.
We define the sequence of probability measures

k = 1,2, ... , BE flJ,

where flJ are the Borel subsets of X. This sequence converges weak* in
.A(X) to Ex • The restriction Ik of I-'k to G belongs to K and satisfieso

for k -+ 00,

weak* in G*. We fix a k for which Ik +- lx, A,c < 1, and define

k = 1,2,... , BEflJ,

where D k ' is the complement of D k in X. The relation

yields

with Ik , Ik' E K, 0 < Ak < 1, and Ik +- Ix. This means that Ix is not an
extremal point of K.

Conversely, let Ix not be an extremal point of K, then Ix = ,\[1 + (1 - A) 12

for 0 < A < 1 and some 11 ,12 E K, h +- Ix. Let 1-'1,1-'2 E f!lJ be any two
extensions of 11, 12 , respectively, and let I-' = Al-'l + (1 - A) 1-'2' Since
1-'1 +- Ex, we have I-'i{x}) < 1, hence also I-'({x}) < 1. Thus we obtained
a measure I-' in f!lJiSo) that is different from Eo: •
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Let So be as above, and let G = lin So . The set of points x E X for which
Ix is an extremal point of K, is called the Choquet boundary, achG, of G.

With this terminology we obtain from Corollary 1 of Theorem 3 and
Proposition 5 the following theorem (Saskin for Y = Y+ [23J, Wulbert
[28], and Saskin [24] for Y = .~):

THEOREM 4. Let So be a subset of C(X) that separates points of X and
contains the function I x. Then So is a Korovkin set with respect to Y in C(X)
exactly when

G = lin So . (1.3.4)

1.3.2. In this subsection we discuss the notion and properties
of peak points, important for the study of the Choquet boundary. A more
detailed exposition of Choquet theory can be found in the books of Alfsen
[l], Bauer [2], and Phelps [20].

To justify the name of boundary for achG, we make the following remarks.
Let G be a closed subspace of C(X), separating points and containing the
function Ix. A subset Be X is called a boundary for G, if for each g E G
there is a point x E B for which Ig(x) I = II g II. (Thus, the name comes
from the theory of analytic or harmonic functions). One can prove: The
set achG in X is a boundary for G. The smallest closed boundary for G,
if it exists, is called the Silov boundary for G. It is not difficult to show
that in the above situation, the Silov boundary exists and is identical with
the closure of the Choquet boundary for G.

Later, we will need generalizations of the Choquet boundary based on
slightly different ideas. A point X o E X is a peak-point of G (Bishop) if there
exists a gl E G for which gl(XO) = :1 gl II, Igl(X)! < II gIll, x =1= Xo' This is
not the only possible definition. In Section 1.5 we learn two further ones.
Under the assumption that Ix E G, they are equivalent to the present one.

For the set p(G) of peak-points we have the obvious inclusion

peG) c achG. ( 1.3.5)

A subset S of C(X) for which peG) = X, is called a strict Korovkin set for Y
in C(X). For example, S = {I, x, x2} has the property. Thus, Korovkin's
theorem holds not only for positive transformations, but also for contrac
tions. In Section 2, we shall see an example of a Korovkin set that is not
strict.

In a real Banach space E, we consider a point of the unit sphere of E,
Ilfll = 1. The point f is smooth if there exists precisely one hyperplane
passing through f and supporting the unit ball. In other words, f is smooth
if there exists a unique element f * of the unit sphere of the dual space for
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which f*(f) = 1. For example, consider the unit sphere of the space
G = lin S, where S is a Korovkin subset of C(X). An element g E G, II g II = 1
is smooth if and only if Ig(x) I attains its maximum on X exactly once.
For if g(X1) = ±1, g(x2) = ±1, Xl =I- x2 , then there are two different
functionals g* with the required property, namely, the restrictions of ±€"l
and ±€" to Gwith properly chosen signs. In the following we shall need [20]:

2

PROPOSITION 6 (Mazur). For a separable Banach space, the set of all
smooth points of the unit sphere is a dense Ga-set.

By means of Mazur's theorem, Mil'man [19] proves a counterpart of
(1.3.5):

PROPOSITION 7. If Ix E G and if S separates points, then

OchG C peG).

We give proofs of generalizations of this in Section 1.5, Theorem 9,
and after Theorem 8.

1.4. Geometric Characterization of Korovkin Sets

1.4.1. The results of Section 1.3 are simple and straightforward.
Since 1x E So, the same conditions and constructions work for the three
cases g"+, 3;, 3;+. For general sets S, however, the conditions are slightly
different in the three cases.

Let S be an admissible subset of C(X), let G, G*, the map (/J, X* C G*
be as before. The three cases are characterized by the existence of an interval
IC IR (namely 1+ = [0, + 00), II = [-1, +1], 11+ = [0,1]) with the
property that if f(x) E I, X E X, then ,.,,(f) E I for,." E.!e. Let I X x* denote
all functionals of the form ill, ,\ E I, I E X*; we put

K = co*(I X X*). (1.4.1)

LEMMA 5. (i) The set K of (1.4.1) consists of all functionals IE G* that
satisfy I( g) E I for each g E G with the property g(x) E I, X E X.

(ii) Equivalently, K consists of the restriction to G of all functionals
,." E .!e(G).

Proof That (i) is equivalent to (ii) follows from different forms of
Hahn-Banach theorem.

To prove (i), we denote the set of IE G*, described in (i), by Ko • Clearly,
Ko is weak* closed and convex, and contains K. Assume that there exists
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an 10 E Ko\K. Then 10 can be separated from K by means of a hyperplane
in G*, given by some go E G. This means that

(1.4.2)

This leads to a contradiction: In case .r+, (1.4.2) means that '\go(x) < lo( go)
for all,\ :;? 0 and all x E X. Consequently, go(x) ~ 0 for all x, and lo( go) ~ O.
In case ~, one gets Igix) I < lo( go) for all x, or II go II < lo( go) ~ II go Ii.
Similarly, for ~+ we get go+(x) < lo( go) ~ lo( go+) ~ II go+ II for all x E X.

In case .r+, the set K = K" is the closed convex cone in G* with the
vertex in the origin, spanned by the set X*. The set K = K1 is the closed
unit ball of G*; equivalently, K1 = co*(X* u (-X*». Finally, K1 -'

K+ n K1 = co*(X* u {O}).
In case .r-c we note some simple necessary conditions that must be

satisfied for a Korovkin set S. Let Px be the ray in K+ generated by x E X:
Px = {.:\Ix: ,\ :;? O}. From condition (1.2.9) of Theorem 3 it follows, as a
necessary condition for a Korovkin set S:

Px * p,:, if x * x', x, x' E X. (1.4.3)

Another simple necessary condition is given by

LEMMA 6. The cone K+ is acute: K+ n (-K+) = {O} if and only if G
contains a strictly positive function go .

Proof It is clear that the condition is sufficient. To prove its necessity,
let J be the intersection of Ki- with the unit sphere in G*, and let K be its
weak* closed convex hull; K is weak* compact. The assumption is equivalent
to the statement that 0 is an extreme point of K+. Then 0 does not belong
to K. For otherwise it would be an extreme point of K, which is impossible,
since by Mil'man's theorem all extreme points of K belong to J. Then we
can separate 0 and K by a hyperplane in G* with an equation I( go) = 1,
IE G*. The function go is obviously strictly positive.

A ray p of a cone K with vertex in 0 is called extreme, if whenever IE P
and I = .:\11 + (I - ,\) 12 , 11 , 12 E K, then 11 , 12 E p. We have:

PROPOSITION 8. Assume that the cone K+ is acute and that (1.4.3) is
satisfied. Then a ray Px is an extreme ray of K+ exactly when

(1.4.4)

Proof The proof is similar to that of Proposition 5, and we shall omit
the details. First let (1.4.4) be violated. Then there exists a measure flo E 2'x+,

fl. * Ex • If the mass of flo is concentrated at x, then flo = CiE x , and applying
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this to go, we obtain ex = I. Hence, there exists a point Xo + x and a
decreasing sequence {Dk : k = I, 2, ...} of compact subsets, not containing x,
whose intersection is {xo}, with the property that Ak = I-'(Dk) > °for all k.
If for all k, Ak is the constant Ao = I-'(X) > 0, then I-' = Aoe", . Restriction

o
to G would give 1", = AoI", , contrary to the assumption (1.4.3). Hence,

o
Ak < Ao for all large k. We define the measures in 2+,

for any Borel measurable set B, and denote the restriction of the corre
sponding functionals by Ik , 11:' Since I-'k ---+ E", weak* in A(X), and con-

o
sequentIy Ik ---+ 1", $ P'" weak* in G*, we have Ik $ P'" for all large k. Theo
relation between I-'k , I-'k', I-' yields

0<~:<1.

This means that 1", is an interior point of the interval [Aolk , Aolk'] with end
points in K+, which is not contained in P"" Thus, P'" is not an extremal
ray of K+.

From Theorem 3 and the necessity of Conditions (i) and (ii) below,
we obtain

THEOREM 5. An admissible set S in C(X) is a Korovkin set with respect
to :7+ exactly when the following conditions are satisfied:

(i) P'" '* P"" for x + x', x, x' EX
(B+) (ii) K+ (') (-K+) = {O}

(iii) for each x E X, P'" is an extremal ray of K+.

We turn our attention to the case 5;: . A necessary condition for S C C(X)
to be a Korovkin set is

X* (') ( - X*) = 0. (1.4.5)

For otherwise 1", = -1",' for some x '* x', and then ~'''' contains the element
- E",' , different from E", •

The transformation 1---+ -1 is an isomorphism of KI onto itself; it maps
x* onto -X*. It follows that 1", and -1", are at the same time extreme
points of KI or they are not.

PROPOSITION 9. Let (1.4.5) be satisfied. For a point x E X,

~.",(S) = {E",}

holds if and only if 1", is an extreme point of K I .

(1.4.6)
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Proof (similar to proofs of Propositions 5 and 8). Assume that there
exists a fl, E £i.x, fl, =1= Ex' We have II fl, II = 1, Ifl, I(X) = 1. If the total
mass of fl, is concentrated at x, then I fl, I = Ex ; hence, fl, = Ex (even if all
g E G vanish at x). Hence, there exists a compact set Do C X\{x} with
fl,(Do) =1= O. By Hahn's decomposition theorem, we can find a compact
subset DC Do, fl,(D) =1= 0, on which fl, is positive (or negative). Using (l.4.5)
we can prove (in a way similar to the proof of Proposition 5) that Ix is a
nontrivial convex combination of points of K1 . The proof of the inverse
is easy.

From this and Theorem 3 we obtain:

THEOREM 6. An admissible set S in C(X) is a Korovkin set with respect
to s;: if and only if

(B1) it satisfies (1.4.5) and in addition all points of x* are extreme
points of K 1 .

By Mil'man's theorem, the last condition is equivalent to

ext K1 = X* u (-X*).

We formulate the result for s;:+ without proof.

(1.4.7)

PROPOSITION 10. An element Ix E X* is an extreme point of K1+ exactly
when

THEOREM 7. An admissible subset S of C(X) is a Korovkin subset for
s;:+ exactly when each point of x* is an extreme point of K1+, i.e.,

1.5. Korovkin Sets and Peak Points

In the classical case, when IxES and S separates points, there are two
equivalent definitions of the Choquet boundary by means of extremal
points and by means of the condition !Ex = {Ex}. In the Sections 1.4 and 1.5,
we do not assume that Ix E S, and in [4], S need not even be admissible
in the sense of Section 1.1. In such situations, relevant for us is the second
definition:

Let S be a subset of C(X) and let G = lin S. For each of the three possible
classes ff, the set of all points x E X that satisfy ~(S) = {Ex}, will be called
the generalized Choquet boundary 8G of G, or simply boundary of G with
respect to ff.
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The theorems of Section 1.4 have obvious formulations in terms of aG.
In the case of .'T+, if h is a strictly positive function in C(X) and S' =
{g': g' = g/h, gES}, G' = linS', we have

(1.5.1)

Indeed, if 2'-;; (S) = {ex }, we can show that 2'~ (S') = {ex }. Let p- E 2'~ (S'),
""0 0 0 0 0

then p- ;? 0 and p-( g') = g'(xo), g' E G'. Then p-if) = p-U/h) h(xo) belongs
to 2'+ and satisfies P-l(g) = g(xo), g E G; hence, P-l = exo and P- = exo ·

If we do not assume that Ix E S, the definition of a peak point, given
in Section 1.3.2, proves to be suitable only if .'T = ~. We define a point
X oE X to be a peak point for G and the class .'T if there is a function go E G
with the following properties:

(P+) In case of .'T+, go must satisfy go(xo) = 0, go(x) > 0, x eft Xo
(here, X o is a zero minimum point).

(PI) For ~, the condition is Igo(xo)I = 1 and Igo(x)j < 1, x eft Xo
(a maximum modulus point).

(PI+) For ~+, we require that go(xo) > 0, go(x) < go(xo) for x eft X o
(a positive maximum point).

We leave it to the reader to prove:

PROPOSITION 11. If Xo is a peak point for .'T, then ff'x (S) = {ex}. The
o 0

three definitions ofpeak points coincide if 1x E G.

As a corollary we obtain: If the set of peak points of G satisfies

peG) = X, (1.5.2)

then S is a Korovkin system for .'T. Korovkin sets of this kind are called
strict Korovkin sets.

Of importance is also the weaker notion of quasi-peak-points, which
we formulate first for the case .'T+.

A point X o E X is a quasi-peak-point of G if for each e > 0 and each
neighborhood U of X o there exists a function go E G+ for which go(x) ;? 1
for x E X\ U and go(xo) < e.

For the set q+(G) of quasi-peak-points we have the inclusions

(1.5.3)

Only the last inclusion needs a proof. If X o E q+(G), p- E 2'~ , we show
o

that p- = ex . Applying p- to the function go of the definition, we haveo
p-( go) = go(xo) < e; hence, measure p- of the set X\ U is <e. Since this
is true for each pair U, e the whole mass of p- is concentrated at Xo .
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THEOREM 8. If S is a subset of C(X) and if G contains a strictly positive
function go, then for the class ,r+,

( I. 5.4)

Proof Inclusion q+(G) C a+G will be proven in a forthcoming paper [18].
Together with (1.5.3), this gives the first part of (1.5.4). To prove the second
relation, we define S' = {g' = g/go: g E S}, then Ix E S'. Clearly p+(G') =

p+(G). Using (1.5.1) and Proposition 7, we obtain the result.

Remark. Using the first relation (1.5.4), we can prove Proposition 7
without the assumption that S separates points. In fact, assume 1x E G
and let XoE a+G; then for given 0 < E < 1, and a neighborhood U of xo ,
there exists a function go E G from the definition of a quasi-peak-point.
Substracting a constant if necessary, we may assume that go vanishes in
a point of U. Then 1 - go/II go II is positive and belongs to the unit sphere
of G. We approximate this function by a smooth function gl E G; then gl
will attain a strict maximum on U. Therefore 1 - gl will have a minimum
equal to zero in exactly one point Xl E U.

THEOREM 9. If S is a subset of C(X) that separates points of X, then

(1.5.5)

Proof (patterned after [19]). It is sufficient to show that the image of
PI(G) under the homeomorphism @ is dense in the set of extreme points
of K I , that is, in the image of aGo We select an extreme point Ixo and show
that it belongs to the weak* closure of the set Y = {Ix: X E piG)}. Clearly,

(1.5.6)

If we can show that Ix belongs to K', the right-hand side of (1.5.6), then
o

Ix would be an extreme point of K', and the theorem of Mil'man would
o

give that Ixo belongs to the closure of Y, hence Xo to the closure of PI(G).
Assume that Ix ¢= K'; then Ix can be separated from K' by a hyperplane

o 0

given by some go E G. This means that

(X = sup{Alx(go): 1'\ I :::;; 1, X EPI(G)} < Ixo(go),

or that

(1.5.7)

We assume II go II = 1 and we approximate go by a smooth function gl
of the unit sphere in G, which attains unique maximum modulus at some
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point Xl E X. Then Ig(X) [ < IgiXI)! for all X E PI(G), which is a contradic
tion, since Xl E PI(G).

Sometimes the following is useful in determining oG.

PROPOSITION 13. Let gk E G, k = 1,2,... , and let A k be the set where
gk vanishes. Assume that gn is positive on the set Al n ... n A n- l (for n = 1,
this means gl ~ 0). If nk A k = {xo}, then Xo E oG.

Proof By induction one shows that if p, E 2'~ (G), then p, is concentratedo
on An.

THEOREM 10. Each Cebysev system S (with more than three functions)
on X = [a, b] or X = lr is a Korovkin system; moreover, p+(SrJ (a, b)
in the first case, p+(S) = lr in the second.

Proof By a theorem of Krein [11, p. 28] for given Xo E X, there exists
a gO E G that vanishes at Xo and satisfies gO(x) > 0 for X =1= Xo ' The only
exception is when X = [a, b], X o = a (or X o = b) and m is odd; in this
case, the function gO could vanish also at the other end point of [a, b].
In this exceptional case, there is a function g(1) E G which vanishes at X o ,
and is >0 at the other end point. Then Proposition 13 (with one or two sets
A k ) gives the proof at once.

Let X be a compact metric. space. About the subspace G C C(X) we
shall assume now only that it is nonvanishing: For each X E X there is a
g E G for which g(x) =1= O.

DEFINITION. A point X o E X is a .7;.+-quasi-peak-point for G if for each
E > 0 and each neighborhood U of X O , there exists a A ~ 0 and g E G
with the properties

g ~ A, g(xo) > A- E,

g(x) ~ A- I if XEX\U.

We have:

THEOREM 11. If G is a nonvanishing subset of C(X), then

(1.5.8)

where 01+G is the .7;.+-boundary of G.

The proof is similar to that of Theorem 8; see [18, Theorem 5].
By the definition of boundaries,
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However, it is easy to see that oG = 01+G if G contains a strictly positive
function. In this case, there is no difference between the !T+ and the g;+
quasi-peak-points.

In conclusion, we would like to mention that most of the results of
Section 1, for example the sufficiency parts of Theorems 1 and 3, hold for
spaces C(X) of continuous functions on an arbitrary compact Hausdorff
topological space X. That the necessity parts are not valid, follows from
an example of Scheffold [25, p. 7].

2. FINITE KOROVKIN SETS

2.1. Reformulation of Theorems

2.1.1. In this chapter, S is a finite subset of C(X),

S = {go, gl ,... , grn} (2.1.1)

of order m; if go = Ix we write So instead of S.
We assume that the set X contains at least m + 1 points and that the

gk are linearily independent. By means of correspondence

m

g = I akgk f-> (ao , al '00" am)
k~O

m

I(g) = I aklk f-> (10 , h ,00" 1m)
k~O

defined for g E G = lin S and IE G*, we see that G and G* are both
isomorphic to the m + I-dimensional Euclidean space IRm+l. Hence, the
evaluation map (1.3. I) in Section 1.3:

m

lig) = I akgix),
k~O

(gE G)

can be identified with the map

x --+ ep(x) = (go(x), gl(X), ..., gm(X)) (2.1.2)

of X into IRm +l, with x* = ep(X). If S is admissible, then ep is a homeo
morphism, and 0 ¢: X*.

For a set So , X* lies in the hyperplane of IRm +l, consisting of points with
first coordinate = 1. We then replace ep by

x -->- epo(x) = (glx), ... , gm(x)) E IRrn,

and write Xo* = epo(X).

(2.1.3)
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In a finitely dimensional space, the convex hull of a closed set is closed.
Hence, our definitions of the sets K of Sections 1.3 and 1.4 reduce to:

K+ is the convex cone in \R.m+l with the vertex

in the origin, generated by X*;

K I = co(X* u (-X*)), K I + = co(x* U {On,

(2.1.4)

(2.1.5)

(2.1.6)

With ff standing for ff+, ~, ~+, K for the set K+, K I , K I + and (B)
for the conditions (B+), (BI ) , (BI +) of Section 1.4, we have (Saskin [23, 24]):

THEOREM 1. A finite subset S of C(X) is a Korovkin set for ff if and
only if the corresponding set K satisfies condition (B).

THEOREM 2. A finite set So is a Korovkin set for ff if and only if

ext Ko = Xo*, or, equivalently, ext Ko :J Xo*.

The logical relations between these notions are as follows. Each Korovkin
set for ff+, or for ~, is also (trivially) a Korovkin set for ~+. There are
no other relations; this follows from Examples 1 and 7 of Section 2.2.

2.1.2. A point 10 of a convex set K in \R.m+1 is called an exposed
point of K if there exists a hyperplane H (supporting K) for which H n K =
{to}. For the set of all exposed points of K we have

exp KC ext K. (2.1.7)

Similary, a ray p of a convex cone K in \R.m+1 with vertex °is an exposed
ray of K if for some hyperplane H passing through 0, H n K = p. With
these notions, we shall interpret the different conditions (P) of Section 1.5.

For a given XoE X, condition (P+) means that there is a point go =
L~ ak gk in G for which l<x (go) = 0, and I( go) > °for all IE X*. Theno
also I( go) = 0, IE P<xo ' and I( go) > 0, for IE K+. Hyperplanes through °
in \R.m+1 = G* are given by equations I( g) = °with fixed g. Hence, (P+)
means that the ray P<Xo is an exposed ray of K+. Similarly, (PI) and (P2)

mean that l<xo is an exposed point of K I or K I +, respectively. Proposition 11
of Section 1.5 becomes: If P<x is an exposed ray (or l<x

o
an exposed point)

of K+ (or K I , or K I +) with respect to ff, then x belongs to the generalized
Choquet boundary 8G of G.

We need the following result of Straszewicz for subsets of \R.m +1.
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PROPOSITION 1. (i) If K is a compact convex set in IRm+I, then the set
exp K is dense in ext K. (ii) If K is an acute cone in IRm+l, then the set of
the exposed rays of K is dense in the set of all extreme rays of K.

For (i), see [26]; (ii) can be derived easily from (i). As a consequence,
we obtain:

THEOREM 3. For each of the three classes .r, the set of the peak points
of G is dense in aGo

For example, peG) is dense in X if S is a Korovkin set.

2.2. Examples of Korovkin Sets

The results in this section follow easily from principles developed in
Section 2.1.

EXAMPLE 1. Let X = [a, I], 0 ~ a < I, S = {x, x2}. This set S is not
a Korovkin set for .r+. It is a Korovkin set for g;: if and only if a ;?o ao =
21 / 2 - I. For a > ao, it is also a strict Korovkin set, with the function go
corresponding to xo , a ~ X o ~ 1 given by go(x) = (xfxo)(2 - xjxo). For
a = ao we have P1(G) = (ao , I]. For s;.+, S is a strict Korovkin set for
each a> O.

EXAMPLE 2. Let h,f~ ,... ,iT be finitely many continuous functions
on X, which separate points. Then

(2.2.1)

is a strict Korovkin set for each of the classes .r on X. With the help of
the function

r

go(xo) = 2: Ullx) - fixo))2
k=l

one sees that each point X o E X is a peak point for .r.

(2.2.2)

EXAMPLE 3. For an arbitrary compact subset X of IRr, the system of
functions

So = {I, Xl'"'' x r , X 1
2 + ... + x r

2
}

is a strict Korovkin system for each of the classes .r.
In Example 2 (and Example 3) one proves that So satisfies the condition

(P+) by finding a function g(xo , x), which is a linear combination offunctions
of the system So with coefficients that depend continuously on X o . This is
not always possible:
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EXAMPLE 4 [15]. The set So = {I, X, X 2 + I x I} is a strict Korovkin
set for X = [-1, +1], but there does not exist a function g(xo , x) of the
above type with continuous coefficients. The map Wo: x ---+ (x, x 2 + I x I)
transforms X into a strictly convex curve Xo+ in 1R2 that has no continuous
selection of supporting straight lines.

One of the most beautiful examples is:

EXAMPLE 5. Let ~-l be the unit sphere in IRr, given by the equation
X 1

2 + .. , + x r
2 = 1, and let X be a closed subset of .9'r-I' Then So =

{I, Xl"'" x r } is a strict Korovkin system for !T. For 5;.+, already the set
of the coordinates S = {Xl"'" X r } is a strict Korovkin set, for 5;. this is
true precisely when X n (- X) = 0, that is, when X has no antipodal
points.

The following example gives a Korovkin system which is not strict.

EXAMPLE 6 (Saskin [23]). Let X be the curve formed by the arcs of
the circles X l

2 + X 2
2 = 4, (Xl ± 1)2 + X 2

2 = 1, as shown on Fig. 1. Then

FIGURE 1

the set of functions So = {I, Xl ,x2} is a Korovkin set for !T, but not a
strict Korovkin set. The map (/)0 transforms X into itself; all points of
Ko = co X are extreme points of X, but the points (-1, -1) and (1, -1)
are not exposed points of Ko .

EXAMPLE 7. Let K+ be the cone X 3
2 = Xl

2 + X 2
2 in 1R3. Let Y be any

closed bounded star-shaped curve in the Xl' x2-plane, so that each ray
through the origin intersects Yexactly once; let X be the curve on K+ whose
projection is Y. Then S = {Xl' X 2 , xa} is a strict !T+ Korovkin set on X,
but not a 5;. Korovkin set, if Y is shaped as shown on Fig. 2.

In Example 5, we have seen that there are Korovkin sets for 5;.+, for
which G = lin S does not contain a strictly positive function. For 5;. there
is a similar example:
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FIGURE 2

EXAMPLE 8. Let X be any closed set in the unit upper semisphere of
IRa, which contains only the three points (-1,0,0) and (1/21/ 2, ±1/21 / 2, 0)
in the equatorial plane Xa = 0. Then S = {Xl' X 2 , xa} is a Korovkin set
in C(X) for g;, but if g is any nonnegative function in G = lin S, then
g vanishes at each of the three points.

EXAMPLE 9 (M. Wolff). Let G be a dense subspace of C(X); then it can
happen that no finite subset in G forms a Korovkin set for C(X), although
there are finite Korovkin sets in C(X). Take, for example, G to be the
subspace of all piecewise linear functions in qo, I].

2.2.2. Let X denote an interval [a, b] or the circle u. A set S =

{go, gl ,... , gm} of functions in C(X) is a Cebysev system on X if each non
trivial linear combination L~~o ak gk has at most m distinct zeros on X
or, equivalently, if for each set of m + 1 distinct points X o ,... , X m of X,

det( gi(Xk)) =I 0.

THEOREM 4. Each Cebysev system S = {go ,... , gm}, m ;::::: 2 is a Korovkin
system with respect to Y +.

Proof According to a theorem of Krein [II, p. 28], for each X oEX
there exists a g ;::::: °that vanishes precisely at the point X o ; the only exception
is when X = [a, b], when m is even, and X o is one of the end points a, b.
Then g may happen to vanish at the other end point too. In the first case,
S is a strict Korovkin set. In the exceptional case, we apply Proposition 13
of Section 1.5 with two sets Al , A 2 •

A geometric proof of Theorem 4 bears some interest.

2.3. The Minimal Order of Korovkin Sets

The minimal order of a Korovkin set with respect to Y, which can exist
on a given metric compact X, is a topological invariant m(Y). We are able
to determine it.
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LEMMA 1. A compact convex body in IRn is homeomorphic to the unit
ball in IRn.

THEOREM 5 [23, 24]. Let ro , r be the minimal dimension of the sphere
Y'r or ofthe Euclidean space 1Rr, respectively, into which X can be topologically

o
embedded. Then

m(X, Y+) = ro + 1, m(X,~) = r, m(X, ~+) = ro . (2.3.1)

Proof Case Y+. Let S = {go, gl ,... , gm} be a Korovkin set of
minimal order carried by X. Then the functions are linearly independent,
and without loss of generality we may assume that go = 1.

We map X homeomorphically by means of the map x -+ (gl(X),,,,, gm(x))
into the space IRm. If Xo* is the image of X and Ko = co Xo*, then Ko is a
convex compact set with interior points in IRm. Otherwise Ko would be
contained in a hyperplane of IRm, and the functions gk would not be linearly
independent.

Let y(O) be an interior point of Ko , and let Y'm-l be the unit sphere in
IRm with center y(O). Theorem 2 shows that Xo* is situated on the boundary
of Ko , and Lemma 1 shows that the central projection from y(O) maps
Xo* homeomorphically into ~H' Thus, also X is embeddable in Y'm-l'
This proves that m(X, Y+) ? ro + 1. The inverse inequality follows from
Example 5, Section 2.2: Each subset of Y'r

o
carries a Y+ Korovkin set of

order ro + 1.

Case s;.. Again let S = {go, gl ,... , gm} be a Korovkin set of minimal
order. We consider the homeomorphic embedding <P of X into IRm+l with
image X*. From the properties of the set KI mentioned in Theorem 1, it
follows that X* and - x* are disjoint and that each ray through the origin
meets X* at most once. The central projection of X* from the origin onto
the unit sphere Y'm with center 0 defines an embedding of X into Y'm , which
contains no antipodal points. But then X is homeomorphic to a subset
of IRm. We obtain m ? r. The inverse inequality follows again from
Example 5, Section 2.2.

Case s;.+ can be treated in similar fashion, and is left to the reader.
This proof gives also:

COROLLARY. If X carries a Korovkin set of order m, then also a strict
Korovkin set of the same order.

EXAMPLE 10. Let lfr , r = 2,3,... be the r-dimensional torus. Then

m(lfr ,Y+)=r+2,

In fact, Ifr is embeddable in IRr+l, but not in Y'r.
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1t is not the purpose of this survey to discuss relations of constants r 0 , I'

to other topological invariants of X. We shall mention only a few facts.
It follows from Theorem 5 that X has a finite Korovkin set if and only if
it has a finite topological dimension /1 = dim X. According to a theorem
of Menger-Nobeling, one has n ~ 1'0 ~ I' ~ 2n + 1 [11]. It follows from
this that

/1 + I ~ m(X,.r+) ~ 2/1 + 2
/1 ~ m(X, 5;.+) ~ m(X,~) ~ 2n + 1.

(2.3.2)
(2.3.3)

2.4. Existence of Linear Relations

2.4.1. Let x* be a subset of the Euclidean space IRm+! and let
Y E IRm+!. The point Y is a linear combination of points of x* if there exists
a representation

k

Y = I aiYi,
i~l

Yi EX*. (2.4. I)

The linear combination (2.4.1) is trivial if one of the coefficients Oi is 1,
all other zero; it is positive if ai :;0 0 for all i; it is convex if, in addition,

k
Li=l ai = 1.

According to a theorem of Caratheodory [16, p. 20], a convex combination
of points of X* in IRm+! is also a convex combination of some m + 2 points
of X*. According to a theorem of Fenchel [8, p. 9] the number m + 2 can
be replaced by m + 1 if x* is connected.

The following definition is due to K. Borsuk.

(i) A subset x* of IRm+! is k-independent if no k + 1 points of X*
lie in a k-dimensional subspace of IRm+!, or, equivalently, if no point of X*
is a nontrivial linear combination of k other points of X*.

(ii) A subset X* of IRm+! is k-regular if no k + 1 points of x* lie
in a (k - 1)-dimensional plane of IRm+\ in other words, if no point of X*
is a nontrivial linear combination, with sum of coefficients equal to 1,
of some k points of X+.

These notions can be used in study of systems of functions S = {go,
gl ,... , g"J in C(X). We consider the map q>: x --+ (go(x), ... , gm(x)) of
the set X into the Euclidean space IRm+!. We call the set S (and the map q»
k-independent if q> is a homeomorphism and if the image x* of X under
q> is k-independent. In particular, for a set So, let go = 1, and let Xo* be
the image of Xo under q>: x --+ (gl(X), ... , gm(x)). One sees that So is
k-independent if and only if So separates points and if Xo* is k-regular
in IRm.

In application to Cebysev systems we have:
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PROPOSITION 2. Let S = {go , gl ,... , gm} C C(X) be a set of functions
that separates points of X. Then S is a Cebysev system on X if and only if
it is m-independent.

Proof This follows from the criterion for Cebysev systems by means
of determinant (2.2.3) of Section 2.2.

Systems S that are k-independent for some 0 ~ k ~ m, are important
generalizations of Cebysev systems, due to Rubinstein. They share some
of the properties of the latter. See ZuhovickiI [30].

2.4.2. For Korovkin sets, one needs different notions.

(i) A set X* in IRm+l is k-positively independent if no point of x*
is a nontrivial positive linear combination of some k other points of X*.

(ii) The set x* is k-convexly regular if no point of X* is a nontrivial
convex combination of some k points of X.

Using the theorems of Caratheodory and Fenchel, we see that X* is
r-positively independent (convexly regular) for all r if and only if it is (m + 2)
positively independent (convexly regular). If X* is connected, we can replace
m + 2 here by m + 1.

One sees easily that 2-positively independent sets are also 2-independent,
and that 2-convexly regular sets are even 2-regular.

Conditions (B+), (B1), and (B1+) of Theorem 1 can be expressed in these
terms. We obtain:

THEOREM 6. An admissible set S = {go ,... , gm} in C(X) is

(i) a §'+-Korovkin set if and only if 0 does not belong to the convex
closure of x* (or if G = lin S contains a strictly positive function) and if
X* is (m + 2)-positively independent.

(ii) S is a~+ Korovkin set if and only if X* is m + 2 convexly regular.

There is also a version for ~ and for the case when X is connected.
Comparing properties of Cebysev and Korovkin sets, we obtain:

COROLLARY 1. IfS = {go ,... , gm} is a Cebysev set on a connected set X,
then S is a §'+-Korovkin set. (This is Theorem 4).

By a theorem of Krein [11, p. 28], G = lin S contains a strictly positive
function go. Dividing, if necessary, by go we may assume that go = 1.
Then Xo* is m-regular (hence m-convexly regular) in IRm ; hence, X* is
m-positively independent in IRm +l.
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EXAMPLE 11. For nonconnected X, this is not necessarily true (Saskin).
Let X be the union of two parabolic arcs X 2 = -(Xl + 1)2, -1 ~ xlc;;; 0,
x 2 = (Xl - 1)2, 0 ~ Xl ~ 1 in ~2. Then S = {I, Xl' X 2} is not a Korovkin
set, but it is a Cebysev set, because each line in ~2 intersects X at most twice.

COROLLARY 2. If S = {go ,... , gm} is a §'+ Korovkin set on a compact
metric space X, then S is 2-independent (for a special case of this, see Volkov
[27]). In particular, S = {go, gl' g2} is a §'+ Korovkin set on a connected X
if and only ifS is a Cebysev system. (This is Theorem III of Section 0.)

2.5. Korovkin Sets on Spheres

It seems to be difficult to characterize, in a simple way, all Korovkin
sets of minimal order carried by a given compact metric space X. For the
interval and the circle this is done by means of Theorem III of Section O.
In general, problems of this type lead to difficult questions of convex
topology in Euclidean spaces. The following result provides an inverse
to Corollary 2, Section 2.1. One obtains in this way a complete charac
terization of minimal Korovkin sets on spheres.

THEOREM 7 (G. G. Lorentz [18]). A 2-independent set of functions
S = { go, gl ,... , gm} on the sphere Y:n-l is a strict Korovkin set with respect
to §'+ in C(Y'm-I)'

This theorem has purely geometric formulations. Each 2-independent
set is admissible; the map (/> of (1.3.1) is a homeomorphism. The statement
of the theorem then translates into: The set of coordinates {Yo ,... , Ym}
is a strict Korovkin set on X* = (/>(Y'm-l)'

As another geometric formulation of Theorem 7 we obtain:

PROPOSITION 3. Let Y be a topological image of ,'1'm-1 in ~m+l that is
2-independent. Then at each point y of Y there exists a strict supporting
hyperplane for Y, passing through the origin.

For a proof, see [18].
Theorem 7 has a special case for a set So which contains the function

go = Ix. Using the map (/>0' we obtain a new geometric interpretation
of this special case.

PROPOSITION 4. Let Y be a topological image of ,'1'm-1 in ~m which is
2-regular. Then at each point of Y there exists a strict supporting hyperplane.

We leave it to the reader to find a direct proof of this.
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In [23], Saskin has the following assertion: If X is the closure of a bounded
region in IRm , then a set S = {go ,... , gm} separating points is a ff+-Korovkin
set if and only if it is 2-independent. However, the proof given there [23,
p. 140] is apparently incorrect, in particular if m ;? 3.

3. ApPENDIX

The present paper develops the "geometric" (or "Saskin") theory of
Korovkin sets, which is based on the map ep of the set X into the conjugate
space G*, and the convex properties of the image ep(X). Its best applications
are for finitely dimensional sets G.
In contrast, a paper by Berens and Lorentz [4] is devoted to the "analytic

theory" of Korovkin sets; it is based on the notion of the upper envelope

J(x) = inf{g(x): g E G, g ;? f}

and the lower envelope lex) = -(-f)(x). These notions go back to an
old paper by Lorentz about almost convergence, but have been used lately
by Bauer [2] and Baskakov [3]. This "analytic theory" has a wider scope
and is valid for sequences of positive operators Tn from C(X) into a Banach
lattice E, with the identity map I replaced by a lattice homomorphism P;
it determines not only Korovkin sets but also shadows. However, contractions
Tn cannot apparently be treated with ease by this theory.

If G is a subspace of C(X), E is a Banach lattice, and P is a given lattice
homomorphism of C(X) into E, then f E C(X) belongs to the shadow
Y(G, C(X), E, P) of G if for each sequence of positive linear operators Tn
from C(X) to E, relations Tn g ->- Pg, g E G imply Tnf ->- Pf (The set of f
where this happens for a fixed sequence Tn is the convergence set of Tn .)
The set G is a Korovkin set if its shadow is the whole space C(X). The problem
is to describe the shadow of G, if possible.

The basic result of the theory (see [4]) is the following

THEOREM A. If G contains a strictly positive function go , then

G C Gsuppp C Y(G, C(X), E, P).

Here, for any compact A ex, GA denotes the set of all fE C(X) for which
lex) = J(x) for all x E A, and G = Gx .

Unfortunately, in [4] this theorem appears explicitly only under the
assumption that Ix E G and that the functions g E G separate points, a restric
tion that is not natural when dealing with shadows. In the form given above,
it appears only as a remark in [4, p. 12].
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The (generalized Choquet) boundary 8G of G is the set of all x E X for
which/(x) = J(x) for allfEO C(X), or equivalently, offfor which all positive
linear extensions of Ex from G to C(X) coincide at f A point x EO X belongs
to 8G if and only if it is a quasi-peak-point of G (see Lorentz [18]). As a con
sequence of Theorem A, we have

THEOREM B. If 8G = X, then G is a Korovkin set.

Phelps remarks that in the given generality, 8G does not have properties
of a boundary. Whatever its name, the set 8G is needed here.

About paper [4] we shall remark that Theorem 6 of Section 1 and its
proof remain valid under the only assumption that II Ie II -->- °for fJ-e -->- 0,
the property of dominated convergence of Lv not being essential. The example
of the spaces M(a., p) shows that this is a genuine improvement.

A different procedure, based on lattice-theoretic techniques, was used
in [5] to determine the shadow (or the convergence set) for positive con
tractions of U into itself. In [5], this is done when Ix EO G; the general case
is settled in [6]. Moreover, similar techniques work for fairly general Banach
function spaces (spaces with uniformly monotone norm), see [4, Appendix; 6].

We conclude by pointing out three papers dealing with shadows that will
soon appear. Priestley [21] discusses shadows of sets 8 that consist of all
pairs g, g2, g EO 81 , The interesting papers of Bernau [7] and Wulbert [29]
describe sets in LV or in a Banach lattice that are shadows of some un
specified set seE, with respect to (not necessarily positive) contractions.
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